
SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

S q u e a k : a L a n g u a g e fo r C o m m u n i c a t i n g w i t h M i c e

Luca CardeUi

Rob Pike

AT&T Bell Labora tor ies

M u r r a y Hill , New J e r s e y 07974

A b s t r a c t

Graphical user interfaces are difficult to implement
because of the essential concurrency among multiple interaction
devices, such as mice, buttons, and keyboards. Squeak is a user
interface implementation language that exploits this con-
currency rather than hiding it, helping the programmer to
express interactions using multiple devices. We present the
motivation, design and semantics of squeak. The language is
based on concurrent programming constructs but can be corn-
piled into a conventional sequential language; our implementa-
tion generates C code. We discuss how squeak programs cart be
integrated into a graphics system written in a conventional
language to implement large but regular user interfaces, and
close with a description of the formal semantics.

CR Categories: I3.6 Graphics languages, Interaction techniques
D3.1 Formal semantics

CR General Terms: Algorithms, Theory, Languages
Additional Keywords: Concurrency, User Interfaces

I n t r o d u c t i o n

User interface implementation languages ([Buxton 83],
[Thomas 83]) usually address the construction of a user inter-
face from building blocks such as menus, scroll bars and free-
hand curves. Although it is worthwhile to automate the build-
ing of programs from such building blocks, there is an underly-
ing level that these languages do not address: the implementa-
tion of the building blocks themselves. Moreover, the pro-
cedures that provide menus, graphical potentiometers and other
user interface modules tend (in our experience) to be more diffi-
cult to write or modify and clumsier in execution than one
would expect. The primitives never seem complex in principle,
but the programs that implement them are surprisingly intri-
cate.

Providing a suitable graphical display is not especially dif-
ficult; what causes problems is the complicated flow of control
required to deal with all the possible sequences of user actions
with the input devices. One might consider a scrolling menu,
for example, as a finite state automaton reading an input token
for each event generated by the user: buttons up and down,
entering and leaving the scroll bar rectangle, etc. Interaction
primitives would probably be simpler to write and understand if
they were implemented as state machines. A translator that

Permission to copy without fcc all or part of this material is granted
providcd that thc copies arc not made or distributed for direct
commercial advantage, thc ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, rcquires a fcc and/or specific permission.

© 1985 ACM 0-8979 !- 166-0/85/007/0199 $00.75

converted state machine descriptions into regular programs
would make the job even easier.

There are a couple of factors tha t limit the usefulness of
this technique, however. First, the presence of multiple input
devices invalidates the notion of a single stream of tokens driv-
ing the state machine; for example, the procedure implementing
a menu should not worry about characters typed on the key-
board, even those typed while the user is using the menu.
Second, the passage of time is often important in user inter-
faces. Some pairs of events are only meaningful when the indi-
vidual events occur sufficiently near in time. Consider clicking
a mouse button twice: if the clicks are nearly simultaneous,
they might be construed as the single event 'double click.'

A more powerful structure is a set of communicating finite
state machines, each of which implements the actions associated
with some sot of user events. If the individual machines exe-
cute concurrently, each may be enabled when an event is avail-
able for it, so the user interface need never 'lock up' waiting for
a specific event. Another concept from concurrent program-
ming, the timeout, can be used to encode time-sensitive pro-
ceduros.

In contrast to approaches based on parsing a single input
stream [van den Bos 83], the language we present here, called
squeak, is an explicitly concurrent language, resembling CSP
[Hoare 78] and CCS [Milner 80], and with the passage of t ime
built rigorously into the semantics as in SCCS [Milner 82] and
ESTEREL [Berry 84]. Processes in squeak communicate by
exchanging simple messages on multiple channels. A prede-
fined channel is used for communicating with each device.

The concurrency in a squeak program must be expanded
out for squeak to be of practical value in a conventional pro-
gramming environment. Our implementation generates an
open-coded (as opposed to table driven) state machine, written
in C [Kernighan 78], that expresses all possible execution paths
of the set of processes in the program. The sequence of input
events controls the path taken by the single-stream sequential
execution of the program. In practice the relatively simple pro-
grams needed to describe user interfaces are well-behaved,
although in general the state space of a set of concurrent
l~rocesses can explode.

Tutor ia l i n t r o d u c t i o n to squeak
The following sections will explain squeak in detail; this

tutorial introduces and motivates the basic ideas.

Squeak programs are composed of processes executing in
parallel. A process, or perhaps a few processes, typically deal
with a particular action or external device; the composition of
processes then handles the set of actions and device events
relevant to the program. Communication between processes is
achieved by sending messages on channels. There are two
classes of channels: primitive and non-primitive. Primitive
channels are pre-defined, and provide access to external devices.
Non-primitive channels are for ordinary message-based com-
munication. The syntax c !exp sends the value of the expression
exp on channel c; c ?var reads the message on channel c into the
variable oar.

199

¢ @ S I G G R A P H '85

Our i m p l e m e n t a t i o n of squeak def ines t h e p r imi t ive chan-
ne ls DN a n d UP, wh ich repor t m o u s e bu t t on t r ans i t i ons ; M,
m o u s e cursor posi t ion (M!p sets t h e cursor posi t ion, M?p r eads
it);'t K, cha r ac t e r s typed on t h e keyboard; T, t he c u r r e n t abso-
lu te t ime; a n d E a n d L, t h e m o u s e e n t e r i n g a n d l eav ing cer ta in
rec tangles . T h e p r imi t i ve c h a n n e l s r e t u r n appropr ia te values ;
M for e x a m p l e r e t u r n s a poin t d a t a s t ruc tu re . UP a n d DN
r e t u r n no value; i f t h e m o u s e h a d severa l bu t tons , t hey m i g h t
r e t u r n t h e m o u s e b u t t o n n u m b e r , or t he re could be a s epa ra t e
channel for each button. E and L return the appropriate rec-
t ang le . Squeak does not specify how the program announces its
interest in rectangles on the display; our implementation pro-
rides C-callable functions to push and pep sets of rectangles to
be watched. Events come in meaningful order, so that UP and
DN events must alternate, as must E and L of a given rectan-
gle.

Here is a simple squeak program that places typed text on
the display at points indicated by the mouse:

proc Mouse = DiN?. M?p. moveTo!p. UP?. Mouse

proc Kbd(s) = K?c.
if c = = NewLine then

typed!s. Kbd(emptyString)
else

Kbd(append(s, c))
fi

proc Text(p) =
< moveTo?p. Text(p)
:: typed?s. {drawString(s, p)}?. Text(p) >

type = Mouse & Kbd(emptyString) & Text(nulIPt)

....... Z;

typed~~moveTo \! Squeak Cede

_ 2 _

Process structure in the example program

The last line states that the generated C procedure type is the
result of the parallel execution of three processes. The Mouse
process waits for the mouse button to be depressed. When it is,
the mouse coordinates are sent on channel rnoveTo, where they
will be read by the Text process. Mouse then waits for the
mouse button to be released, and restarts. (The precise

t Primitive events are special: the sender of M? and the receiver of M!
are always external to the program.

s e m a n t i c s of t hese ac t ions a re d i scussed in t he following sec-
t ions.) Kbd wai t s for a cha r ac t e r to be typed. I f t h e c h a r ac t e r
is a newline , i t s ends t h e complete l ine on channe l typed a n d
res ta r t s ; o therwise i t appends t h e cha r ac t e r to t h e l ine. T h e
append func t ion is a C rou t i ne def ined e lsewhere; squeak t r e a t s
i t s invoca t ion as a l i tera l express ion. Note t h a t because Mouse
and Kbd are processes, not functions, their recursive invoca-
tions do not stack; they are goto's, not subroutine calls.

Finally, the Text process waits for a message on channel
moveTo or typed, and records the mouse position or draws the
string on the display, as appropriate. The code in brace brack-
ets { } is a C expression evaluated at that point in the execution
of Text. Typical squeak programs implement only the flow of
control; the actual work at each state of execution is done by
such calls to external code.

This simple example is artificial, but illustrates the basic
ideas of squeak. Most important, a process monitors each input
device, and each such process is independent. If a mouse button
is held down while typing continues, the text will still be
displayed when a newline is typed. This works because of the
concurrent execution of the Mouse and Kbd processes.

Syntax and informal semantics
A squeak p r o g r a m is a se t of process dec la ra t ions followed

by a m a i n process, wh ich m a y u se t h e declared processes.

prog ::= decl id = main
decl ::= ~] proc pid formals = prcs decl
main ::= prcs rename I main \ id I

main & main I (main)
prcs ::= pid actuals I

action, prcs I
wait [exp] prcs]I prcs]
i f exp t h e n prcs e l s e prcs fi I
< prcs l i s t > I
(p r c s)

ac t ion ::= id ? Iid ! I id ? id t id ! exp
prcs l i s t ::= e] prcs I prcs :: p rcs l i s t
formals::= • I (idlist)
actuals ::= • I (explist)
rename::= e I [id / id] rvname
idlist ::= id Iid, idlist
explist ::= exp] exp, explist
exp ::= id I num l exp op exp I (exp)
op ::= + I - I * l / t= I== I< I> I<= I>= It =

T h e s imp les t process is < > (also called stop or deadlock),
which c a n n o t pe r fo rm a n y act ion.

A process of t h e form a !exp.p is r eady to o u t p u t t h e v a l u e
of exp on t he c h a n n e l a, a n d t h e n execute p. T h e va lu e can be
read by t h e process a?x.p, which b inds t h e i n p u t va lue to t h e
identifier x, with x available in (and local to) the continuation
p. If no value is passed during a communication, we can simply
write a! or a?. These are all instances of simple processes,
which consist of an action (a !exp or a ?x) and a continuation.

The action a !exp cannot execute until there is a matching
a ?x, and vice versa. If more than one input is active on a chan-
nel, only one will receive the value; the others remain
suspended until the next input.

A process may wait for input or output simultaneously on
severa l channe l s : t h i s is a nondeterministic choice opera t ion
a m o n g processes. For e x a m p l e <a?x.pl :: b!y.p2 :: e?z .p3> is
w a i t i n g for i n p u t on a a n d c, a n d for o u t p u t on b. C o m m u n i c a -
t ion m a y h a p p e n on a n y ava i l ab le channe l , s a y a, a n d in t h a t
case p 1 becames t h e process con t inua t ion (the o ther con t inua -
t ions P2 a n d P3 are discarded). A choice be tween two processes
m a y also be w r i t t e n p + q ; t h i s is no t par t of t h e syn tax , b u t is a
conven ien t n o t a t i o n w h e n d i s cus s ing t h e s eman t i c s . Choice is
associa t ive , so t h a t < p :: q :: r > can be w r i t t e n ((p + q) + r),
or (p + (q + r)). A choice w i th a s ing le a l t e r n a t i v e < p > is
equivalent to p. A choice of zero alternatives is the deadlock
<>, which is the identity in sums, i.e. <> + p isp.

Some actions can have a timeout condition: the simple pro-
cees wait[3]a?x.p I] q will wait for input on channel a for a max-
imum of three time units. If an a communication happens
within that time, p will be executed. If communication is not

200

SAN FRANCISCQ JULY 22-26 Volume 19, Number 3, 1985

achieved in time, the process will time out and execute q;
wait[O]a?x.p]1 q is equivalent to q.

Conditional flow of control is achieved by an if-then-else-
fi construct. A boolean condition is used to decide between two
possible process continuations. If the condition is true, the
then-part continuation will become the current process, other-
wise the else-part will.

Processes can be defined recursively:

procp= <c!0.<> :: a!3.p :: b?x.p>
procq= <c?z.<> :: a?y.b!(y+l).q>
example = p & q

The third line executes the processes p and q in parallel. Ini-
tially the two processes can exchange a c action, in which case
they both stop, or an a action, in which case p goes back to the
initial state, while q gets into a state where it can only do a b
action (which can now be absorbed by p) and then go back to its
initial state. Note that when a process calls another process, it
is a process replacement, not a subroutine call; processes never
return to the calling process.

Every execution path of a process must encounter an
action before it encounters an execution of itself. This rules out
pathological cases like p = p and p = <a ?x.q :: p >.

A process may have parameters, which are available as
local variables within that process. For example, consider the
following counter process, which may receive an increment sig-
nal or a telIContents signal. It has a local parameter n, which
is the current count:

proc counter(n) =
< increment?m, counter(n+m)
:: telIContents!n . counter(n) >

The process would be created by running counter(O). Although
from appearance the telIContents !n message can be emitted at
any time, the meaning of communications is such that there
must be a matching action telIContents ?v to receive the mes-
sage in some other process before the sending action may be
executed. Similarly, the increment ?m is only executed when
another process emits an increment !exp. Therefore, most of the
time the counter process is suspended waiting for a matching
message to choose which path of the selection to take.

A complete squeak program is a parallel composition of
processes, possibly with channel renamings to facilitate the
reuse of process definitions. A complete program can perform
external communications on predefined channels, or internal
communications on user-defined channels. Communications on
user-defined channels must all be satisfied internally, or a
deadlock will result.

Example 1: Simple menus
Our implementation of squeak compiles a program into a

single C function that executes the combined state machines of
the processes in the program. The passing of arguments and
return values is handled by two special primitive channels,
ARG and RES. The action ARG?x stores in x the program's
actual argument list. The variable x will in general be a data
structure to implement the passing of sets of values to the pro-
gram. The action RES !exp returns the expression to the caller
of the program. The way these must be implemented, of course,
is as a call and return from the function, so ARG must be the
first communication received by a program, and RES the last
emitted.

To handle more complicated interactions with C code, our
implementation of squeak interprets text enclosed in brace
brackets { } as literal C expressions (except that squeak process
variables may be renamed for uniqueness). Such an expression
is valid wherever an ordinary expression is valid, or in place of
an input channel in an action, in which case the value of the
expression is assigned to the variable (if any) in the action.
This allows a reasonably clean connection to the outside world,
and keeps squeak independent of the generated language.

Here is a complete example that uses ARG and RES to
implement simple menus:

proc Roam(m, sel) =
< E?r . {highlight(r))? . Roam(m, rtesel(r))
:: L?r. {lowlight(r)~? . Roam(m, - 1)
:: UP?. {erasemenu(m)}?. RES!sel. Menu >

proc Menu =
ARG?menu. {drawmenu(menu)}?. Roam(menu, -1)

The generated function is called 'simpleMenu'
simpleMenu = Menu

A menu is an array of labeled rectangles. The external function
rtoseI(r) maps a rectangle to its label, drawmenu and
erasemenu create and destroy the menu's display, highlight
highlights a rectangle and lowlight undoes the highlighting.
Part of the task of drawing and undrawing the menu is identi-
fying to the event manager the rectangles that tile the menu,
one per element. Conceptually, the Menu process is always run-
ning, but blocked on receipt of an argument menu to draw. (In
reality, of course, Menu is not started until simpleMenu is
called.) A higher-level process invokes Menu when it detects
the mouse button depressed for a significant time. Menu then
draws the menu and invokes Roam, which highlights the
appropriate rectangles as the mouse roams across the menu.
The return result, generated when the mouse button is released,
is the label of the rectangle the mouse is in when the button is
released, or - 1 if the mouse is outside the menu, indicating no
selection. Its final action is to restart the Menu process, but
this is done only for clarity; RES terminates the invocation of
Menu. Note that the ARG and RES channels must be handled
specially by the compiler so that a program bracketed by ARG
and RES actions behaves like a conventional C function.

Example 2: Double c l i ck ing
As an example of a squeak program using timeouts, con-

sider the problem of detecting clicks (mouse button down and up
again in a short time) and double clicks (two clicks separated by
a longer but finite time) without losing any button transitions.
Here is a squeak process that detects single clicks on a one-
button mouse:

Click =
DN?. wait[clickTime] (UP?. click! . Click) II

(down! . UP? . up! . Click)

When a mouse button is depressed, Click receives a DN event
and waits for a corresponding UP. When the UP is received, a
click event is generated and the process restarts. If the ~.P
event is not received within clickTime, Click emite a non-
primitive down event to indicate to another process that the
mouse button is being held down. Then it waits for the
corresponding UP and re-emits it as an up signal.

Here is a process that detects clicks and double clicks:

DoubleClick =
DN?.
wait[clickTime] UP?.
wait[doubleClickTime] DN?,
wait[clickTime] UP?. doubleClick!. DoubleClick
[I click!, down!. UP?. up!. DoubleClick

{I click!. DoubleClick
I] down!. UP?. up! . DoubleClick

If DoubleClick receives two clicks with the proper timing, it
emits a doubleClick event; otherwise if emits click, down and
up events so another process can receive them.

If clicks and double clicks did not have timeouts,
DoubleClick could call Click to interpret the single clicks.
Because two timeouts are involved, though, the processes can
get out of step. Consider the following erroneous implementa-
tion of DoubleClick:

DoubleClick =
click?, wait[doubleClickTime]

(click?. doubleClick!. DoubleClick)
II (click!. DoubleClick)

If the timeout occurs, the click! action must be emitted to
preserve the events, but i t may appear after a down event emit-
ted by Click. The two independent timeouts on the same
stream of events have reordered the events. DoubleClick is

201

@ S I G G R A P H '85

therefore written as a single process with nested timeouts. If
timeouts are not involved (and in practice they rarely are), con-
structing squeak programs hierarchically works well.

C o m p i l a t i o n
A squeak program is compiled by analyzing all the possi-

ble execution sequences of the program, and expanding them
into C code. There is no scheduling on user channels: schedul-
ing and communications are 'compiled away,' producing effi-
cient sequential code segments interleaved with random choices
and calls to the underlying primit ive event manager. This is
made practical by two properties of the language. First, there
are restrictions on its expressive power, primarily t ha t the syn-
tax only allows a fixed number of processes, and all the chan-
nels are statically known. Second, most practical programs
focus the i r activity on the external device channels ra ther t han
on inter-process communication. The special na ture of the
primit ive events in squeak are essential to its usefulness and
practicality.

Primit ive events are handled by three C functions tha t
monitor the mouse, buttons, clock and other I/O devices of the
system. The event types are but ton transi t ions, mouse motion,
mouse enter ing or leaving a rectangle, keyboard characters
typed, and clicks of the 60Hz clock, (Our display is a Teletype
DMD-5620 terminal runn ing a simple non.preemptive multipro-
g ramming system similar to tha t described in [Pike 83].) The
function waitevent(elist) suspends the calling process unt i l one
of the events in the list is pending. The re turn value is the
name of one of the pending events. The event remains pending
unt i l event~e) is called with an argument naming the desired
event. Event re turns a structure describing the event, including
information such as, for example, which rectangle was entered.
Event will call waitevent if no event is pending. Waitevent also
allows a t imeout to be specified for each of the events being
awaited. Finally, testevent(e) tests whether any of the named
events are pending. The split s t ructure of the event code sim-
plifies the implementat ion of processes awai t ing multiple
events: a C s w i t c h s ta tement selects, based on the re turn value
of waitevent, which event to read and which variable should
receive the event 's re turn value. Because the type of the re turn
value depends on the event and two values are re turned per
event, i t is clumsy to read events in a single call. An event
called alarm is enabled by a separate function, and is generated
when the specified number of clock ticks have elapsed.

Device interrupts place event descriptors on queues. There
is one queue for each device - - keyboard, mouse button, etc. - -
so waitevent simply examines the head of all the queues to see
what events are pending. Each event has a t ime stamp which
is compared with the current t ime when t imeouts are activated
on a queue. If the program examines the queues often, t imeouts
are straightforward to implement. But since the program may
compute for a significant t ime between successive calls to
waiteuent, t imeouts in the past mus t make sense. The algo-
r i thm is this: When an event is returned to the program, its
time stamp is recorded. When the program enables a timeout,
waitevent decrements the timeout period by the interval
between the last event returned and minimum of the present
time and the time of the next event (if any) in the queue being
timed out. If the timeout period becomes negative, a timeeut is
generated. Otherwise the next event is returned if it exists, or
the regular timeeut code is executed if not. It is the decrement
of the timoout period that lets the program catch up with real
time.

A communication on a user channel is transformed into a
simple assignment. A matching pair of actions a ?x and a!3
becomes xffi3. A nondeterministic choice between primitive
events is compiled to a call to the underlying event code. As
soon as one of the events is available, control is returned to the
squeak program, which selects the appropriate process continua-
tion for that event. A nondeterministic choice between user
communications becomes a random choice between the possible
execution paths. When a choice must be made between primi-
tive events and user communications, testevent is called to
check which primitive events are pending, and the choice made
dynamically among the possible paths.

A parallel composition of processes is compiled into all the
possible interleavings of primitive actions and communications
of the component processes. This is done by advancing one of
the processes one step, and considering all the possible con-
t inuat ions of tha t and all other processes. The s tate of the
ent ire system is then restored to the init ial state, and another
path considered, advancing another process or the same process
by a different action. This procedure is repeated unt i l all possi-
ble executions have been considered. When more t han one exe-
rat ion path is possible a t a point, the set of possible communica-
t ions is pruned and flattened to el iminate all the avoidable
deadlocks and redundant nested execution paths, according to
the laws p+~> =p and ((p+q)+r)=(p+(q+r)). The
remaining available paths are compiled as a dynamic random
selection of which path to take. A process identifier is simply
expanded into the corresponding definition.

There are some optimizations that can be made during
code generation. Note that any legal interleavings of the
actions of parallel straight-line processes that do not access
primitive events are equivalent. It is therefore unnecessary to
generate all possible interleavings; one will do. The same
applies within all subsequences of selections. The compiler
therefore 'pushes' all processes as far as they can legally go,
without accessing any primitive events, until the system is
deadlocked. At this point, some processes will probably be
blocked on primitive events, so the code is generated to access
the event and choose subsequent execution depending on which
event is received. For this to be successful, of course, the pro-
gram must access primitive events, but a squeak program whose
execution does not depend heavily on external inputs is prob-
ably pathological. To avoid loops in the compilation and to
keep the generated code small, at each step of the compilation
the translator detects states that have already occurred in the
translation process, and generates jumps back to them, thereby
folding the executions paths together at common states.

Here is a simple example, followed by the output of the
translator:

procp = DN?.<a?x. <c?z.p::d?k. UP?. p> ::b?y.p>
proc q ffi <a!l. d!2. q :: b!3. UP?. q>
procr =c!4.UP?.a!5.r
example= p&q&r

example(){
int x, y, z, k;
Lab0:event(DN);
Labl:switch(nrand(2)){ /* 'a' or 'b' */
case 0: /* 'a' */

x=(1);
Lab2: switch(nrand(2)){ /* 'c' or 'd' */

case0: /*'c' */
z= (4);
switch(waitevent(DN~UP)){
case DN:

event(DN);
event(UP);

Lab5: x= (5);
goto Lab2;

case UP:
event(UP);
event(DN);
goto LabS;

}
case 1: /*'d' */

k=(2);
event(UP);
goto Lab0;

case 1: /*'b'*/
y=(3);
switch(waitevent(DN~UP)){
case DN:

event(DN);
event(UP);
gote Lab1;

case UP:
event(UP);
goto Lab0;

) }

202

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

Initially, nothing can execute until p receives a DN event. It
can then exchange with q either an a message, setting x to 1, or
a b message, setting y to 3. It is instructive to follow through
the rest of the execution tree. Note particularly the state fold-
ing at Lab 1, and where p and r exchange an a message, setting
x to 5. The assignment to x occurs in two different execution
paths that are folded together at Lab 5. The innermost switch
could actually be compiled into better cede, since the order of
receipt of the DN and UP events is irrelevant, but detecting
situations like this requires looking at the states of processes
after actions not yet compiled (that is, looking into the future),
which our implementation does not do.

Use of s q u e a k fo r comp lex i n t e r f ace s

Although squeak was designed to program the lowest lev-
els of a user interface, it can be used effectively to construct the
higher levels by combining squeak programs hierarchically,
treating larger events such as menu selections in the same
manner as primitive events.

Consider the implementation of a hypothetical paint pro-
gram on a bitlnap display with a three-button mouse. A pair of
Click-like processes monitor the left and middle buttons. The
left button sets bits, the middle button clears them. When a
click is received, a single instance of the brush is placed in the
picture, with boolean combination function depending on which
button was clicked. If Click generates a down event, multiple
copies of the brush are laid out along the path traced by the
mouse until an UP event is generated by the mouse. A Menu
process is invoked whenever the right button is depressed, to
select commands to change brushes, read and write files, and so
on. Some action, perhaps a menu selection or a double click,
invokes a high-resolution paint program that operates on indi-
vidual pixels in a magnified portion of the picture.

By coding a squeak program that takes as arguments
functions to call for the left and middle buttons, and a menu for
the third button, the user interface can be made nearly identical
in both painting modes: the regular paint program is instan-
tiated with procedures to draw the brushes and the main menu,
and the action that invokes the high-resolution program calls
the same program recursively, but with arguments appropriate
to painting individual pixels. Only one user interface need be
written.

Of course, it may be possible to apply these ideas to the
operating system itself. The concurrency in a squeak program
is compiled out because processes are fairly expensive in a con-
ventional operating system. If process scheduling is sufficiently
fast, however, as in many real-time operating systems, it may
be feasible to run squeak programs (not processes) as operating
system processes. If the primitive events are known to the
scheduler, it is possible to write a squeak program to read
events from each input device and emit higher-level events.
The higher-level events can then enter the scheduler as 'primi-
tive' events to be dispatched to other processes. For example,
the Click and DoubleClick processes above could interpret
mouse button transitions for a set of independent user-level pro-
grams sharing the mouse, much as in the Blit operating system
m p x [Pike 83].

F o r m a l semant ics : C o n c u r r e n c y a n d t ime f low

The interrelationships of the parallel processes and com-
munications and timeeuts lead to intricate flows of control. We
defined the formal semantics of squeak as a tool for understand-
ing the detailed behavior of squeak programs. In fact, our first
at tempt at a compiler failed because we underestimated the
complexity of the behavior of parallel communicating processes.
Once we had specified the formal semantics, our understanding
was good enough that the second compiler was easy to write.

The semantics of squeak is given in a language called for-
real squeak. The two languages are very similar, but not identi-
cal. The major difference is that in formal squeak all delays
between actions are explicit. To give the semantics of a squeak
program, we translate it into formal squeak. First, all squeak
actions a?x. or a !v. are converted to formal squeak actions a?x :
or a !v :. The latter mean "do the action immediately, and at the
next time unit do the rest of the process (immediately)." To

preserve the meaning of the original squeak program, we then
introduce explicit delays between actions where they are
needed.

A process is called urgent if all its immediate actions have
timeouts, and is called patient if all its immediate actions do not
have timeouts. Otherwise it is called sloppy. If the process fol-
lowing an action is urgent, no delay is introduced. If the pro-
cess following an action is patient, a delay operator (8) is intro-
duced after the action. Finally, the top-level processes in the
main program are examined, and the patient ones are prefixed
by a delay. If a sloppy process is found, an error is reported.

We use operational semantics [Plotkin 81] to describe the
meaning of formal squeak programs. A process in a state p can
transfer to a state iv' by a transition k. In our case a transition
can be an input action a ?v, an output action a !v, a silent action
(passage of one time unit), written 1, or several simultaneous
actions.

The possible state transitions are expressed by a set of
inference rules, listed below. There are two kinds of rules. In
some situations a process can autonomously change state: these

ground rules have the form p ~ p'. In other situations a pro-
cess can change state only if a part of it can change state
according to ~ the inference Ties; these conditional rules have

the form p > p' ~ q > q'. The implication sign is also
written as a fraction line, with the condition above it and the
consequence below.

A process 5p can spend some time doing 1 actions and
then do whatever action p can do.

A simple output process, like a !v :p, can autonomously do
an a !v transition and become p. As mentioned above, a!v :p
means "do a !v immediately, then at the next time unit do p."
Hence a !v.p is equivalent to a !v :Sp, if p does not have immedi-
ate timeeute.

If there is a timeout, such as wait[3]a !v :p [[q, and a silent
action is performed, then the passage of time decrements the

timeout period: wait [3]a !v :p II q > wait [2]a !v :p]l q. If the a !v
action is not selected in time, the process will degenerate into
wait [0]a !v.p [[q which can perform only q. Input t imseuts are
treated similarly.

A process a ?x :p can receive any value on a, hence it can
perform all the actions a?v for any possible input value o.
Therefore, a?x:p is allowed to make autonomously any a?v
action, but only one of those v will be the right one -- the one
which is produced by a matching output action. Communica-
tion therefore occurs as pairs of actions; this is discnssed in
detail below.

A nondeterministic choice of processes can perform any
action allowed by any of its component processes. As soon as a
component process is chosen, the others are discarded.

A parallel composition of processes can perform an action
only if all its components perform an action. The resulting
action is a composite product action of all the component
actions. For example, in p & q, p may produce a a?v action and
q may produce a b !w action. The resulting action for p & q is
a?v & b!w, the simultaneous occurrence of a?v and b!w. Note
that if a component of a parallel composition deadlocks, the
whole composition deadlocks.

There are rules for simplifying these action products. A
product of the form a?v & a!v reduces to 1, which models the
exchange of a value v on channel a between exactly two
processes. Moreover, the silent action is absorbed in products:
a ?v & 1 is a ?v. Because two complementary actions reduce to
1, the named channel has been used for communication, and the
matching two actions are no longer available to other processes.

How does communication happen? According to the rules
for input and output actions, it seems that inputs and outputs
on a channel can happen independently and need not happen
simultaneously, or t ransmit the same value. However, as one of
many possible situations, input and output actions may match.

The restriction rule, labeled [Restr] in the list of rules
below, is used to prune those situations in which inputs and
outputs do not match: communications which may happen are
forced to happen. When two communications match, the result-
ing action for the whole system is a 1. Hence, to

203

~ S I G G R A P H '85

force possible internal communications to happen, a subsystem
is forced to exhibit only 1 transitions, or external communica-
tions. The notation p [R, where p is a process and R a set of
actions, prevents p from emitting those actions not contained in
R, although such actions may still be reduced to 1 within p.
The notation used in the syntax is p \ a, which is equivalent to
p IR where R is the complement of the set containing all the
single or composite actions having an a component; that is,
p \ a prevents p from exporting any action containing a.

For semantic purposes, a main program p in the syntax
should be intended as p [Prim, which can perform only primitive
actions in the set Prim, which by definition always contains 1.
All the other user-defined actions that p may want to perform
are inhibited by p [Prim; note that this is stronger that just
filtering them away. Hence all the user-defined actions that
components of p may perform must be matched by other com-
ponents o fp and reduced to 1; otherwise a deadlock will occur.

The following are the operational semantic rules for inter-
preting formal squeak. There are no rules for reducing expres-
sions; we simply assume that expressions are already reduced to
their final value wherever they occur. The letter v will be used
to denote values.

[Delay] 8p > ~p P
~ p - - - ~ p '

1
[Wait] wa i t [n+ l]p I[q ---~ wait[n]p [] q

k

[Input]

[Output]

[If]

p > p '
k

wait[n + l ip [[q --->- p '
a?v

a?id:proc > proc{v/id}

ate
a !v :proc ~ proc

proc o > proc~

k
q - - - - ~ q '

wait[0lp II q > q'

if true then proce else procl fi

proct > procl

---> proc~

[Choice]

k

if false then proc0 else proc 1 fi ~ proci

proco > proe~ procl ~ proe~
k

proc0+proc I ~ proc~ proco+proc I ~ proc]

kB kl

proco > proc~ procl > proc~
[Par] Xo~,

proco & procl > proc~ & procl

[Rename] proc ~> proc'
{id/id' }

proc{id/id'} > proc'

[Restr] proc ~ proc' if keR

proc IR ---> proc' IR
k

[Dell proc{actuals/formals~ ~ proc'

pid(actuals) ---~ proc'
where pid (formals)=proc • Defn

where Defn is the set of process definitions for a particular
squeak program.

A simple example may clarify how the semantics works.
Consider the following process (where we have taken some syn-
tactic liberties to match the semantic rules):

procp = a ? x : < >
procq = a!3: < > + b ? y : < >
simple = (p & q) [Prim

All possible actions of the components from the bottom up must
be computed to determine the actions of the whole. The p com-
ponent can do all actions of the form a ?v. The q component can
perform a !3 and all actions b?w. Their parallel composition can
perform all the possible products of a?v with a!3 and of a?v
with b?w. These product actions are: (a?3& a!3) = 1,
(a?v & a!3) for v ¢ 3, and (a?v & b?w) for all v and w. But of
all these actions, only 1 is in the Prim set. Hence
(p & q) [Prim can do only a 1 action, which corresponds to the
communication of 3 on channel a between p and q.

C o n c l u s i o n s
Squeak is a concurrent language for specifying interactive

user interfaces. It can express complex time-dependent inter-
faces in a compact notation. Although squeak could be
developed into a full-blown language, we use it to express sub-
routines which are then integrated in larger programs written
in a conventional sequential language (C).

The integration of concurrent subsystems in sequential
programs is achieved by compiling concurrency into sequential
code whose execution is controlled by the sequencing of external
device events. It is interesting that in the restricted domain of
squeak programs, the context switches between concurrent
processes can be compiled out.

The real-time behavior of squeak is subtle, and we have
found it helpful to express the language's semantics formally,
using the methods of operational semantics.

References
[Berry 84] Berry, G., "The ESTEREL synchronous programming
language and its mathematical semantics," Proc. of the
NSF/SERC workshop on concurrency, CMU, 1984.

[van den Bos 83] van den Bos, J., Plasmeijer, M.J. and Hartel,
P.H., "Input-Output Tools: A Language Facility for Interactive
and Real-Time Systems," IEEE Trans. Soft. Eng., SE-9(3), pp.
247-259, 1983.
[Buxton 83] Buxton, W., Lamb, M. R., Sherman, D. and Smith,
K.C., "A User Interface Management System," L~EMX Conf.
Proc., June 1983, pg. 177.

[Hoare 78] Hoarc, C.A.R., "Communicating Sequential
Processes," Comm. ACM 21(8), pp. 666-678, 1978.

[Kernighan 78], Kernighan, B.W. and Ritchie, D.M., The C Pro-
gramming Language, Prentice-Hall 1978.

[Milner 80] Milner, R., "A Calculus of Communicating Sys-
tems," Lecture Notes in Computer Science, nr.92, Springer-
Verlag, 1980.

[Milner 82] Milner, R., "Four combinators for concurrency,"
ACM SI GACT-SI GOPS Syrup. on Princ. of Distributed Comput-
ing, Ottawa, Canada, 1982.

[Pike 83] Pike, R., "The Blit: A Multiplexed Graphics Termi-
nal," AT&T Bell Labs Tech. J., 63(8), part 2, pp. 1607-1631

[Plotkin 81] Plotkin, G.D., "A Structural Approach to Opera-
tional Semantics," Internal Report DAIMI FN-19, Computer
Science Department, Aarhus University, September 1981.

[Thomas 83] Thomas, J.J. and Hamlin, G., "Graphical Input
Interaction Technique Workshop Summary," Computer Graph-
/cs, January 1983, pp. 5-30.

'204

