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A b s t r a c t  

Graphical user interfaces are difficult to implement 
because of the essential concurrency among multiple interaction 
devices, such as mice, buttons, and keyboards. Squeak is a user 
interface implementation language that  exploits this con- 
currency rather  than hiding it, helping the programmer to 
express interactions using multiple devices. We present the 
motivation, design and semantics of squeak. The language is 
based on concurrent programming constructs but can be corn- 
piled into a conventional sequential language; our implementa- 
tion generates C code. We discuss how squeak programs cart be 
integrated into a graphics system written in a conventional 
language to implement large but regular user interfaces, and 
close with a description of the formal semantics. 
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I n t r o d u c t i o n  

User interface implementation languages ([Buxton 83], 
[Thomas 83]) usually address the construction of a user inter- 
face from building blocks such as menus, scroll bars and free- 
hand curves. Although it is worthwhile to automate the build- 
ing of programs from such building blocks, there is an underly- 
ing level that  these languages do not address: the implementa- 
tion of the building blocks themselves. Moreover, the pro- 
cedures that  provide menus, graphical potentiometers and other 
user interface modules tend (in our experience) to be more diffi- 
cult to write or modify and clumsier in execution than one 
would expect. The primitives never seem complex in principle, 
but the programs that  implement them are surprisingly intri- 
cate. 

Providing a suitable graphical display is not especially dif- 
ficult; what causes problems is the complicated flow of control 
required to deal with all the possible sequences of user actions 
with the input devices. One might consider a scrolling menu, 
for example, as a finite state automaton reading an input token 
for each event generated by the user: buttons up and down, 
entering and leaving the scroll bar rectangle, etc. Interaction 
primitives would probably be simpler to write and understand if 
they were implemented as state machines. A translator that 
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converted state machine descriptions into regular programs 
would make the job even easier. 

There are a couple of factors tha t  limit the usefulness of 
this technique, however. First, the presence of multiple input 
devices invalidates the notion of a single stream of tokens driv- 
ing the state machine; for example, the procedure implementing 
a menu should not worry about characters typed on the key- 
board, even those typed while the user is using the menu. 
Second, the passage of time is often important in user inter- 
faces. Some pairs of events are only meaningful when the indi- 
vidual events occur sufficiently near in time. Consider clicking 
a mouse button twice: if the clicks are nearly simultaneous, 
they might be construed as the single event 'double click.' 

A more powerful structure is a set of communicating finite 
state machines, each of which implements the actions associated 
with some sot of user events. If the individual machines exe- 
cute concurrently, each may be enabled when an event is avail- 
able for it, so the user interface need never 'lock up' waiting for 
a specific event. Another concept from concurrent program- 
ming, the timeout, can be used to encode time-sensitive pro- 
ceduros. 

In contrast to approaches based on parsing a single input 
stream [van den Bos 83], the language we present here, called 
squeak, is an explicitly concurrent language, resembling CSP 
[Hoare 78] and CCS [Milner 80], and with the passage of t ime 
built rigorously into the semantics as in SCCS [Milner 82] and 
ESTEREL [Berry 84]. Processes in squeak communicate by 
exchanging simple messages on multiple channels. A prede- 
fined channel is used for communicating with each device. 

The concurrency in a squeak program must be expanded 
out for squeak to be of practical value in a conventional pro- 
gramming environment. Our implementation generates an 
open-coded (as opposed to table driven) state machine, written 
in C [Kernighan 78], that  expresses all possible execution paths 
of the set of processes in the program. The sequence of input 
events controls the path taken by the single-stream sequential 
execution of the program. In practice the relatively simple pro- 
grams needed to describe user interfaces are well-behaved, 
although in general the state space of a set of concurrent 
l~rocesses can explode. 

Tutor ia l  i n t r o d u c t i o n  to squeak 
The following sections will explain squeak in detail; this 

tutorial introduces and motivates the basic ideas. 

Squeak programs are composed of processes executing in 
parallel. A process, or perhaps a few processes, typically deal 
with a particular action or external device; the composition of 
processes then handles the set of actions and device events 
relevant to the program. Communication between processes is 
achieved by sending messages on channels. There are two 
classes of channels: primitive and non-primitive. Primitive 
channels are pre-defined, and provide access to external devices. 
Non-primitive channels are for ordinary message-based com- 
munication. The syntax c !exp sends the value of the expression 
exp on channel c; c ?var reads the message on channel c into the 
variable oar. 
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Our  i m p l e m e n t a t i o n  of  squeak def ines  t h e  p r imi t ive  chan-  
ne ls  DN a n d  UP, wh ich  repor t  m o u s e  bu t t on  t r ans i t i ons ;  M, 
m o u s e  cursor  posi t ion (M!p sets t h e  cursor  posi t ion,  M?p r eads  
it);'t K,  cha r ac t e r s  typed on t h e  keyboard;  T, t he  c u r r e n t  abso- 
lu te  t ime;  a n d  E a n d  L,  t h e  m o u s e  e n t e r i n g  a n d  l eav ing  cer ta in  
rec tangles .  T h e  p r imi t i ve  c h a n n e l s  r e t u r n  appropr ia te  values ;  
M for e x a m p l e  r e t u r n s  a poin t  d a t a  s t ruc tu re .  UP a n d  DN 
r e t u r n  no value;  i f  t h e  m o u s e  h a d  severa l  bu t tons ,  t hey  m i g h t  
r e t u r n  t h e  m o u s e  b u t t o n  n u m b e r ,  or t he re  could be  a s epa ra t e  
channel for each button. E and L return the appropriate rec- 
t ang le .  Squeak does not specify how the program announces its 
interest in rectangles on the display; our implementation pro- 
rides C-callable functions to push and pep sets of rectangles to 
be watched. Events come in meaningful order, so that UP and 
DN events must alternate, as must E and L of a given rectan- 
gle. 

Here is a simple squeak program that places typed text on 
the display at points indicated by the mouse: 

proc Mouse = DiN?. M?p. moveTo!p. UP?. Mouse 

proc Kbd(s) = K?c. 
if c = = NewLine then 

typed!s. Kbd(emptyString) 
else 

Kbd(append(s, c)) 
fi 

proc Text(p) = 
< moveTo?p. Text(p) 
:: typed?s. {drawString(s, p)}?. Text(p) > 

type = Mouse & Kbd(emptyString) & Text(nulIPt) 

....... ........... Z; 

typed~~moveTo \! Squeak Cede 

_ 2 _  .......... 

Process structure in the example program 

The last line states that the generated C procedure type is the 
result of the parallel execution of three processes. The Mouse 
process waits for the mouse button to be depressed. When it is, 
the mouse coordinates are sent on channel rnoveTo, where they 
will be read by the Text process. Mouse then waits for the 
mouse button to be released, and restarts. (The precise 

t Primitive events are special: the sender of M? and the receiver of M! 
are always external to the program. 

s e m a n t i c s  of  t hese  ac t ions  a re  d i scussed  in t he  following sec- 
t ions.)  Kbd wai t s  for a cha r ac t e r  to be typed.  I f  t h e  c h a r ac t e r  
is a newline ,  i t  s ends  t h e  complete  l ine on channe l  typed a n d  
res ta r t s ;  o therwise  i t  appends  t h e  cha r ac t e r  to t h e  l ine.  T h e  
append func t ion  is  a C rou t i ne  def ined e lsewhere;  squeak t r e a t s  
i t s  invoca t ion  as  a l i tera l  express ion.  Note  t h a t  because  Mouse 
and Kbd are processes, not functions, their recursive invoca- 
tions do not stack; they are goto's, not subroutine calls. 

Finally, the Text process waits for a message on channel 
moveTo or typed, and records the mouse position or draws the 
string on the display, as appropriate. The code in brace brack- 
ets { } is a C expression evaluated at that point in the execution 
of Text. Typical squeak programs implement only the flow of 
control; the actual work at each state of execution is done by 
such calls to external code. 

This simple example is artificial, but illustrates the basic 
ideas of squeak. Most important, a process monitors each input 
device, and each such process is independent. If a mouse button 
is held down while typing continues, the text will still be 
displayed when a newline is typed. This works because of the 
concurrent execution of the Mouse and Kbd processes. 

Syntax and informal semantics  
A squeak p r o g r a m  is a se t  of  process  dec la ra t ions  followed 

by a m a i n  process,  wh ich  m a y  u se  t h e  declared processes.  

prog ::= decl id = main 
decl ::= ~ ] proc pid formals = prcs decl 
main ::= prcs rename I main \ id I 

main & main I ( main ) 
prcs ::= pid actuals I 

action, prcs I 
wait [ exp ] prcs ]I prcs ] 
i f  exp t h e n  prcs e l s e  prcs  fi  I 
< prcs l i s t  > I 
( p r c s  ) 

ac t ion  ::= id ? Iid ! I id ? id t id  ! exp 
prcs l i s t  ::= e ] prcs  I prcs  :: p rcs l i s t  
formals::= • I ( idlist ) 
actuals ::= • I ( explist ) 
rename::= e I [id / id ] rvname 
idlist ::= id Iid, idlist 
explist ::= exp ] exp, explist 
exp ::= id I num l exp op exp I ( exp ) 
op ::= + I -  I * l / t=  I== I< I> I<= I>= It = 

T h e  s imp les t  process  is < > (also called stop or  deadlock), 
which  c a n n o t  pe r fo rm a n y  act ion.  

A process  of  t h e  form a !exp.p is  r eady  to o u t p u t  t h e  v a l u e  
of exp on t he  c h a n n e l  a,  a n d  t h e n  execute  p. T h e  va lu e  can  be 
read  by t h e  process a?x.p, which  b inds  t h e  i n p u t  va lue  to t h e  
identifier x, with x available in (and local to) the continuation 
p. If no value is passed during a communication, we can simply 
write a! or a?. These are all instances of simple processes, 
which consist of an action (a !exp or a ?x) and a continuation. 

The action a !exp cannot execute until there is a matching 
a ?x, and vice versa. If more than one input is active on a chan- 
nel, only one will receive the value; the others remain 
suspended until the next input. 

A process may wait for input or output simultaneously on 
severa l  channe l s :  t h i s  is a nondeterministic choice opera t ion  
a m o n g  processes.  For  e x a m p l e  <a?x.pl :: b!y.p2 :: e?z .p3>  is 
w a i t i n g  for i n p u t  on a a n d  c, a n d  for o u t p u t  on b. C o m m u n i c a -  
t ion m a y  h a p p e n  on a n y  ava i l ab le  channe l ,  s a y  a, a n d  in  t h a t  
case  p 1 becames  t h e  process  con t inua t ion  ( the o ther  con t inua -  
t ions  P2 a n d  P3 are  discarded).  A choice be tween  two processes  
m a y  also be w r i t t e n  p + q ;  t h i s  is no t  par t  of  t h e  syn tax ,  b u t  is a 
conven ien t  n o t a t i o n  w h e n  d i s cus s ing  t h e  s eman t i c s .  Choice is  
associa t ive ,  so t h a t  < p  :: q :: r >  can  be w r i t t e n  ((p + q) + r), 
or (p + (q + r)). A choice w i th  a s ing le  a l t e r n a t i v e  < p  > is 
equivalent to p. A choice of zero alternatives is the deadlock 
<>, which is the identity in sums, i.e. <> + p isp. 

Some actions can have a timeout condition: the simple pro- 
cees wait[3]a?x.p I] q will wait for input on channel a for a max- 
imum of three time units. If an a communication happens 
within that time, p will be executed. If communication is not 

200 



SAN FRANCISCQ JULY 22-26 Volume 19, Number 3, 1985 

achieved in time, the process will time out and execute q; 
wait[O]a?x.p ]1 q is equivalent to q. 

Conditional flow of control is achieved by an if-then-else- 
fi construct. A boolean condition is used to decide between two 
possible process continuations. If the condition is true, the 
then-part continuation will become the current process, other- 
wise the else-part will. 

Processes can be defined recursively: 

procp= <c!0.<> :: a!3.p :: b?x.p> 
procq= <c?z.<> :: a?y.b!(y+l).q> 
example = p & q 

The third line executes the processes p and q in parallel. Ini- 
tially the two processes can exchange a c action, in which case 
they both stop, or an a action, in which case p goes back to the 
initial state, while q gets into a state where it can only do a b 
action (which can now be absorbed by p) and then go back to its 
initial state. Note that when a process calls another process, it 
is a process replacement, not a subroutine call; processes never 
return to the calling process. 

Every execution path of a process must encounter an 
action before it encounters an execution of itself. This rules out 
pathological cases like p = p and p = <a ?x.q :: p >. 

A process may have parameters, which are available as 
local variables within that process. For example, consider the 
following counter process, which may receive an increment sig- 
nal or a telIContents signal. It has a local parameter n, which 
is the current count: 

proc counter(n) = 
< increment?m, counter(n+m) 
:: telIContents!n . counter(n) > 

The process would be created by running counter(O). Although 
from appearance the telIContents !n message can be emitted at 
any time, the meaning of communications is such that there 
must be a matching action telIContents ?v to receive the mes- 
sage in some other process before the sending action may be 
executed. Similarly, the increment ?m is only executed when 
another process emits an increment !exp. Therefore, most of the 
time the counter process is suspended waiting for a matching 
message to choose which path of the selection to take. 

A complete squeak program is a parallel composition of 
processes, possibly with channel renamings to facilitate the 
reuse of process definitions. A complete program can perform 
external communications on predefined channels, or internal 
communications on user-defined channels. Communications on 
user-defined channels must all be satisfied internally, or a 
deadlock will result. 

Example 1: Simple menus 
Our implementation of squeak compiles a program into a 

single C function that executes the combined state machines of 
the processes in the program. The passing of arguments and 
return values is handled by two special primitive channels, 
ARG and RES. The action ARG?x stores in x the program's 
actual argument list. The variable x will in general be a data 
structure to implement the passing of sets of values to the pro- 
gram. The action RES !exp returns the expression to the caller 
of the program. The way these must be implemented, of course, 
is as a call and return from the function, so ARG must be the 
first communication received by a program, and RES the last 
emitted. 

To handle more complicated interactions with C code, our 
implementation of squeak interprets text enclosed in brace 
brackets { } as literal C expressions (except that squeak process 
variables may be renamed for uniqueness). Such an expression 
is valid wherever an ordinary expression is valid, or in place of 
an input channel in an action, in which case the value of the 
expression is assigned to the variable (if any) in the action. 
This allows a reasonably clean connection to the outside world, 
and keeps squeak independent of the generated language. 

Here is a complete example that  uses ARG and RES to 
implement simple menus: 

proc Roam(m, sel) = 
< E?r .  {highlight(r))? . Roam(m, rtesel(r)) 
:: L?r.  {lowlight(r)~? . Roam(m, - 1 )  
:: UP?.  {erasemenu(m)}?. RES!sel. Menu > 

proc Menu = 
ARG?menu. {drawmenu(menu)}?. Roam(menu, -1) 

# The generated function is called 'simpleMenu' 
simpleMenu = Menu 

A menu is an array of labeled rectangles. The external function 
rtoseI(r) maps a rectangle to its label, drawmenu and 
erasemenu create and destroy the menu's display, highlight 
highlights a rectangle and lowlight undoes the highlighting. 
Part  of the task of drawing and undrawing the menu is identi- 
fying to the event manager the rectangles that  tile the menu, 
one per element. Conceptually, the Menu process is always run- 
ning, but blocked on receipt of an argument menu to draw. (In 
reality, of course, Menu is not started until simpleMenu is 
called.) A higher-level process invokes Menu when it detects 
the mouse button depressed for a significant time. Menu then 
draws the menu and invokes Roam, which highlights the 
appropriate rectangles as the mouse roams across the menu. 
The return result, generated when the mouse button is released, 
is the label of the rectangle the mouse is in when the button is 
released, or - 1  if the mouse is outside the menu, indicating no 
selection. Its final action is to restart the Menu process, but 
this is done only for clarity; RES terminates the invocation of 
Menu. Note that  the ARG and RES channels must be handled 
specially by the compiler so that  a program bracketed by ARG 
and RES actions behaves like a conventional C function. 

Example 2: Double c l i ck ing  
As an example of a squeak program using timeouts, con- 

sider the problem of detecting clicks (mouse button down and up 
again in a short time) and double clicks (two clicks separated by 
a longer but finite time) without losing any button transitions. 
Here is a squeak process that  detects single clicks on a one- 
button mouse: 

Click = 
DN?.  wait[clickTime] (UP?. click! . Click) II 

(down! . UP? . up! . Click) 

When a mouse button is depressed, Click receives a DN event 
and waits for a corresponding UP. When the UP is received, a 
click event is generated and the process restarts. If the ~.P 
event is not received within clickTime, Click emite a non- 
primitive down event to indicate to another process that the 
mouse button is being held down. Then it waits for the 
corresponding UP and re-emits it as an up signal. 

Here is a process that detects clicks and double clicks: 

DoubleClick = 
DN?. 
wait[clickTime] UP?. 
wait[doubleClickTime] DN?, 
wait[clickTime] UP?. doubleClick!. DoubleClick 
[I click!, down!. UP?. up!. DoubleClick 

{I click!. DoubleClick 
I] down!. UP?. up! . DoubleClick 

If DoubleClick receives two clicks with the proper timing, it 
emits a doubleClick event; otherwise if emits click, down and 
up events so another process can receive them. 

If clicks and double clicks did not have timeouts, 
DoubleClick could call Click to interpret the single clicks. 
Because two timeouts are involved, though, the processes can 
get out of step. Consider the following erroneous implementa- 
tion of DoubleClick: 

DoubleClick = 
click?, wait[doubleClickTime] 

(click?. doubleClick!. DoubleClick) 
II (click!. DoubleClick) 

If the timeout occurs, the click! action must be emitted to 
preserve the events, but  i t  may appear after a down event emit- 
ted by Click. The two independent timeouts on the same 
stream of events have reordered the events. DoubleClick is 
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therefore written as a single process with nested timeouts. If 
timeouts are not involved (and in practice they rarely are), con- 
structing squeak programs hierarchically works well. 

C o m p i l a t i o n  
A squeak program is compiled by analyzing all the  possi- 

ble execution sequences of the  program, and expanding them 
into C code. There is no scheduling on user channels: schedul- 
ing and communications are 'compiled away,' producing effi- 
cient sequential code segments interleaved with random choices 
and calls to the underlying primit ive event manager.  This is 
made practical by two properties of the language. First, there 
are restrictions on its expressive power, primarily t ha t  the syn- 
tax only allows a fixed number  of processes, and all  the chan- 
nels are statically known. Second, most practical programs 
focus the i r  activity on the external  device channels ra ther  t han  
on inter-process communication. The special na ture  of the  
primit ive events in squeak are essential to its usefulness and 
practicality. 

Primit ive events are handled by three  C functions tha t  
monitor the  mouse, buttons,  clock and  other I/O devices of the  
system. The event types are but ton transi t ions,  mouse motion, 
mouse enter ing or leaving a rectangle, keyboard characters 
typed, and clicks of the  60Hz clock, (Our display is a Teletype 
DMD-5620 terminal  runn ing  a simple non.preemptive multipro- 
g ramming system similar to tha t  described in [Pike 83].) The 
function waitevent(elist) suspends the calling process unt i l  one 
of the  events in the list is pending. The re turn  value is the 
name  of one of the pending events. The event remains  pending 
unt i l  event~e) is called with an argument  naming the  desired 
event. Event re turns  a structure describing the event, including 
information such as, for example, which rectangle was entered. 
Event will call waitevent if no event is pending. Waitevent also 
allows a t imeout to be specified for each of the  events being 
awaited. Finally, testevent(e) tests whether  any of the  named 
events are pending. The split s t ructure  of the event code sim- 
plifies the  implementat ion of processes awai t ing multiple 
events: a C s w i t c h  s ta tement  selects, based on the re turn  value 
of waitevent, which event to read and which variable should 
receive the  event 's re turn  value. Because the type of the  re turn  
value depends on the  event and two values are re turned per 
event, i t  is clumsy to read events in a single call. An event 
called alarm is enabled by a separate function, and is generated 
when the  specified number  of clock ticks have elapsed. 

Device interrupts  place event descriptors on queues. There 
is one queue for each device - -  keyboard, mouse button, etc. - -  
so waitevent simply examines the head of all the  queues to see 
what  events are pending. Each event has  a t ime stamp which 
is compared with the  current  t ime when t imeouts are activated 
on a queue. If  the  program examines the  queues often, t imeouts 
are straightforward to implement. But  since the program may 
compute for a significant t ime between successive calls to 
waiteuent, t imeouts in the  past  mus t  make sense. The algo- 
r i thm is this: When an event is returned to the program, its 
time stamp is recorded. When the program enables a timeout, 
waitevent decrements the timeout period by the interval 
between the last event returned and minimum of the present 
time and the time of the next event (if any) in the queue being 
timed out. If the timeout period becomes negative, a timeeut is 
generated. Otherwise the next event is returned if it exists, or 
the regular timeeut code is executed if not. It is the decrement 
of the timoout period that lets the program catch up with real 
time. 

A communication on a user channel is transformed into a 
simple assignment. A matching pair of actions a ?x and a!3 
becomes xffi3. A nondeterministic choice between primitive 
events is compiled to a call to the underlying event code. As 
soon as one of the events is available, control is returned to the 
squeak program, which selects the appropriate process continua- 
tion for that event. A nondeterministic choice between user 
communications becomes a random choice between the possible 
execution paths. When a choice must be made between primi- 
tive events and user communications, testevent is called to 
check which primitive events are pending, and the choice made 
dynamically among the possible paths. 

A parallel composition of processes is compiled into all the 
possible interleavings of primitive actions and  communications 
of the  component processes. This is done by advancing one of 
the processes one step, and considering all the possible con- 
t inuat ions  of tha t  and all other processes. The s tate  of the  
ent ire  system is then  restored to the init ial  state, and another  
path  considered, advancing another  process or the  same process 
by a different action. This procedure is repeated unt i l  all possi- 
ble executions have been considered. When more t han  one exe- 
rat ion path  is possible a t  a point, the  set of possible communica- 
t ions is pruned and flattened to el iminate all the  avoidable 
deadlocks and  redundant  nested execution paths,  according to 
the laws p+~> =p and ((p+q)+r)=(p+(q+r)). The 
remaining available paths are compiled as a dynamic random 
selection of which path to take. A process identifier is simply 
expanded into the corresponding definition. 

There are some optimizations that can be made during 
code generation. Note that any legal interleavings of the 
actions of parallel straight-line processes that do not access 
primitive events are equivalent. It is therefore unnecessary to 
generate all possible interleavings; one will do. The same 
applies within all subsequences of selections. The compiler 
therefore 'pushes' all processes as far as they can legally go, 
without accessing any primitive events, until the system is 
deadlocked. At this point, some processes will probably be 
blocked on primitive events, so the code is generated to access 
the event and choose subsequent execution depending on which 
event is received. For this to be successful, of course, the pro- 
gram must access primitive events, but a squeak program whose 
execution does not depend heavily on external inputs is prob- 
ably pathological. To avoid loops in the compilation and to 
keep the generated code small, at each step of the compilation 
the translator detects states that have already occurred in the 
translation process, and generates jumps back to them, thereby 
folding the executions paths together at common states. 

Here is a simple example, followed by the output of the 
translator: 

procp = DN?.<a?x. <c?z.p::d?k. UP?. p> ::b?y.p> 
proc q ffi <a!l. d!2. q :: b!3. UP?. q> 
procr =c!4.UP?.a!5.r 
example= p&q&r 

example(){ 
int x, y, z, k; 
Lab0:event(DN); 
Labl:switch(nrand(2)){ /* 'a' or 'b' */ 
case 0: /* 'a' */ 

x=(1); 
Lab2: switch(nrand(2)){ /* 'c' or 'd' */ 

case0: /*'c' */ 
z= (4); 
switch(waitevent(DN~UP)){ 
case DN: 

event(DN); 
event(UP); 

Lab5: x= (5); 
goto Lab2; 

case UP: 
event(UP); 
event(DN); 
goto LabS; 

} 
case 1: /*'d' */ 

k=(2); 
event(UP); 
goto Lab0; 

case 1: /*'b'*/ 
y=(3); 
switch(waitevent(DN~UP)){ 
case DN: 

event(DN); 
event(UP); 
gote Lab1; 

case UP: 
event(UP); 
goto Lab0; 

) } 
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Initially, nothing can execute until p receives a DN event. It 
can then exchange with q either an a message, setting x to 1, or 
a b message, setting y to 3. It is instructive to follow through 
the rest of the execution tree. Note particularly the state fold- 
ing at Lab 1, and where p and r exchange an a message, setting 
x to 5. The assignment to x occurs in two different execution 
paths that are folded together at Lab 5. The innermost switch 
could actually be compiled into better cede, since the order of 
receipt of the DN and UP events is irrelevant, but detecting 
situations like this requires looking at the states of processes 
after actions not yet compiled (that is, looking into the future), 
which our implementation does not do. 

Use of  s q u e a k  fo r  comp lex  i n t e r f ace s  

Although squeak was designed to program the lowest lev- 
els of a user interface, it can be used effectively to construct the 
higher levels by combining squeak programs hierarchically, 
treating larger events such as menu selections in the same 
manner as primitive events. 

Consider the implementation of a hypothetical paint pro- 
gram on a bitlnap display with a three-button mouse. A pair of 
Click-like processes monitor the left and middle buttons. The 
left button sets bits, the middle button clears them. When a 
click is received, a single instance of the brush is placed in the 
picture, with boolean combination function depending on which 
button was clicked. If Click generates a down event, multiple 
copies of the brush are laid out along the path traced by the 
mouse until an UP event is generated by the mouse. A Menu 
process is invoked whenever the right button is depressed, to 
select commands to change brushes, read and write files, and so 
on. Some action, perhaps a menu selection or a double click, 
invokes a high-resolution paint program that operates on indi- 
vidual pixels in a magnified portion of the picture. 

By coding a squeak program that  takes as arguments 
functions to call for the left and middle buttons, and a menu for 
the third button, the user interface can be made nearly identical 
in both painting modes: the regular paint program is instan- 
tiated with procedures to draw the brushes and the main menu, 
and the action that  invokes the high-resolution program calls 
the same program recursively, but with arguments appropriate 
to painting individual pixels. Only one user interface need be 
written. 

Of course, it  may be possible to apply these ideas to the 
operating system itself. The concurrency in a squeak program 
is compiled out because processes are fairly expensive in a con- 
ventional operating system. If process scheduling is sufficiently 
fast, however, as in many real-time operating systems, it may 
be feasible to run squeak programs (not processes) as operating 
system processes. If the primitive events are known to the 
scheduler, it is possible to write a squeak program to read 
events from each input device and emit higher-level events. 
The higher-level events can then enter the scheduler as 'primi- 
tive' events to be dispatched to other processes. For example, 
the Click and DoubleClick processes above could interpret 
mouse button transitions for a set of independent user-level pro- 
grams sharing the mouse, much as in the Blit operating system 
m p x  [Pike 83]. 

F o r m a l  semant ics :  C o n c u r r e n c y  a n d  t ime f low 

The interrelationships of the parallel processes and com- 
munications and timeeuts lead to intricate flows of control. We 
defined the formal semantics of squeak as a tool for understand- 
ing the detailed behavior of squeak programs. In fact, our first 
at tempt at a compiler failed because we underestimated the 
complexity of the behavior of parallel communicating processes. 
Once we had specified the formal semantics, our understanding 
was good enough that  the second compiler was easy to write. 

The semantics of squeak is given in a language called for- 
real squeak. The two languages are very similar, but not identi- 
cal. The major difference is that  in formal squeak all delays 
between actions are explicit. To give the semantics of a squeak 
program, we translate it into formal squeak. First, all squeak 
actions a?x. or a !v. are converted to formal squeak actions a?x : 
or a !v :. The latter mean "do the action immediately, and at the 
next time unit  do the rest of the process (immediately)." To 

preserve the meaning of the original squeak program, we then 
introduce explicit delays between actions where they are 
needed. 

A process is called urgent if all its immediate actions have 
timeouts, and is called patient if all its immediate actions do not 
have timeouts. Otherwise it is called sloppy. If the process fol- 
lowing an action is urgent, no delay is introduced. If the pro- 
cess following an action is patient, a delay operator (8) is intro- 
duced after the action. Finally, the top-level processes in the 
main program are examined, and the patient ones are prefixed 
by a delay. If  a sloppy process is found, an error is reported. 

We use operational semantics [Plotkin 81] to describe the 
meaning of formal squeak programs. A process in a state p can 
transfer to a state iv' by a transition k. In our case a transition 
can be an input action a ?v, an output action a !v, a silent action 
(passage of one time unit), written 1, or several simultaneous 
actions. 

The possible state transitions are expressed by a set of 
inference rules, listed below. There are two kinds of rules. In 
some situations a process can autonomously change state: these 

ground rules have the form p ~ p'. In other situations a pro- 
cess can change state only if a part of it can change state 
according to ~ the inference Ties; these conditional rules have 

the form p > p' ~ q > q'. The implication sign is also 
written as a fraction line, with the condition above it and the 
consequence below. 

A process 5p can spend some time doing 1 actions and 
then do whatever action p can do. 

A simple output process, like a !v :p, can autonomously do 
an a !v transition and become p. As mentioned above, a!v :p 
means "do a !v immediately, then at the next time unit do p." 
Hence a !v.p is equivalent to a !v :Sp, if p does not have immedi- 
ate timeeute. 

If there is a timeout, such as wait[3]a !v :p [[ q, and a silent 
action is performed, then the passage of time decrements the 

timeout period: wait [3]a !v :p II q > wait [2]a !v :p ]l q. If the a !v 
action is not selected in time, the process will degenerate into 
wait [0]a !v.p [[ q which can perform only q. Input t imseuts are 
treated similarly. 

A process a ?x :p can receive any value on a, hence it can 
perform all the actions a?v for any possible input value o. 
Therefore, a?x:p is allowed to make autonomously any a?v 
action, but only one of those v will be the right one -- the one 
which is produced by a matching output action. Communica- 
tion therefore occurs as pairs of actions; this is discnssed in 
detail below. 

A nondeterministic choice of processes can perform any 
action allowed by any of its component processes. As soon as a 
component process is chosen, the others are discarded. 

A parallel composition of processes can perform an action 
only if all its components perform an action. The resulting 
action is a composite product action of all the component 
actions. For example, in p & q, p may produce a a?v action and 
q may produce a b !w action. The resulting action for p & q is 
a?v & b!w, the simultaneous occurrence of a?v and b!w. Note 
that if a component of a parallel composition deadlocks, the 
whole composition deadlocks. 

There are rules for simplifying these action products. A 
product of the form a?v & a!v reduces to 1, which models the 
exchange of a value v on channel a between exactly two 
processes. Moreover, the silent action is absorbed in products: 
a ?v & 1 is a ?v. Because two complementary actions reduce to 
1, the named channel has been used for communication, and the 
matching two actions are no longer available to other processes. 

How does communication happen? According to the rules 
for input and output actions, it seems that  inputs and outputs 
on a channel can happen independently and need not happen 
simultaneously, or t ransmit  the same value. However, as one of 
many possible situations, input and output actions may match. 

The restriction rule, labeled [Restr] in the list of rules 
below, is used to prune those situations in which inputs and 
outputs do not match: communications which may happen are 
forced to happen. When two communications match, the result- 
ing action for the whole system is a 1. Hence, to 
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force possible internal communications to happen, a subsystem 
is forced to exhibit only 1 transitions, or external communica- 
tions. The notation p [ R, where p is a process and R a set of 
actions, prevents p from emitting those actions not contained in 
R, although such actions may still be reduced to 1 within p. 
The notation used in the syntax is p \ a, which is equivalent to 
p IR where R is the complement of the set containing all the 
single or composite actions having an a component; that  is, 
p \ a prevents p from exporting any action containing a. 

For semantic purposes, a main program p in the syntax 
should be intended as p [Prim, which can perform only primitive 
actions in the set Prim, which by definition always contains 1. 
All the other user-defined actions that  p may want to perform 
are inhibited by p [Prim; note that  this is stronger that  just  
filtering them away. Hence all the user-defined actions that  
components of p may perform must  be matched by other com- 
ponents o fp  and reduced to 1; otherwise a deadlock will occur. 

The following are the operational semantic rules for inter- 
preting formal squeak. There are no rules for reducing expres- 
sions; we simply assume that  expressions are already reduced to 
their final value wherever they occur. The letter v will be used 
to denote values. 

[Delay] 8p > ~p P 
~ p - - - ~ p '  

1 
[Wait] wa i t [n+ l ]p  I[ q ---~ wait[n]p [] q 

k 

[Input] 

[Output] 

[If] 

p > p '  
k 

wait[n + l ip  [[ q --->- p '  
a?v 

a?id:proc > proc{v/id} 

ate 
a !v :proc ~ proc 

proc o > proc~ 

k 
q - - - - ~ q '  

wait[0lp II q > q' 

if true then proce else procl fi 

proct > procl 

---> proc~ 

[Choice] 

k 

if false then proc0 else proc 1 fi ~ proci 

proco > proe~ procl ~ proe~ 
k 

proc0+proc I ~ proc~ proco+proc I ~ proc] 

kB kl 

proco > proc~ procl > proc~ 
[Par] Xo~, 

proco & procl > proc~ & procl 

[Rename] proc ~> proc' 
{id/id' } 

proc{id/id'} > proc' 

[Restr] proc ~ proc' if keR 

proc IR ---> proc' IR 
k 

[Dell proc{actuals/formals~ ~ proc' 

pid(actuals) ---~ proc' 
where pid (formals )=proc • Defn 

where Defn is the set of process definitions for a particular 
squeak program. 

A simple example may clarify how the semantics works. 
Consider the following process (where we have taken some syn- 
tactic liberties to match the semantic rules): 

procp = a ? x : < >  
procq = a!3: < >  + b ? y : < >  
simple = (p & q) [Prim 

All possible actions of the components from the bottom up must  
be computed to determine the actions of the whole. The p com- 
ponent can do all actions of the form a ?v. The q component can 
perform a !3 and all actions b?w. Their parallel composition can 
perform all the possible products of a?v with a!3 and of a?v 
with b?w. These product actions are: ( a?3& a!3) = 1, 
(a?v & a!3) for v ¢ 3, and (a?v & b?w) for all v and w. But of 
all these actions, only 1 is in the Prim set. Hence 
(p & q) [ Prim can do only a 1 action, which corresponds to the 
communication of 3 on channel a between p and q. 

C o n c l u s i o n s  
Squeak is a concurrent language for specifying interactive 

user interfaces. It can express complex time-dependent inter- 
faces in a compact notation. Although squeak could be 
developed into a full-blown language, we use it to express sub- 
routines which are then integrated in larger programs written 
in a conventional sequential language (C). 

The integration of concurrent subsystems in sequential 
programs is achieved by compiling concurrency into sequential 
code whose execution is controlled by the sequencing of external 
device events. It is interesting that  in the restricted domain of 
squeak programs, the context switches between concurrent 
processes can be compiled out. 

The real-time behavior of squeak is subtle, and we have 
found it helpful to express the language's semantics formally, 
using the methods of operational semantics. 
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